505 research outputs found

    Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A2 together with epidermal keratinocytes and skin irritation

    Get PDF
    OBJECTIVES: The aim of this exploratory study was to investigate the effect of ethanol, isopropanol and n-propanol on stratum corneum (SC) enzymes and keratinocytes in vitro together with their effects on skin condition and function. METHODS: Activities of kallikrein 5 (KLK5) and phospholipase A2 (PLA2) as well as keratinocyte metabolic activity, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) were measured in vitro in the presence and absence of the different alcohols. We also measured transepidermal water loss (TEWL), skin capacitance, visual dryness and visual redness on the volar forearms of 25 Caucasian women following application of the alcohols 20 and 100 times per day over a period of 14 days in a clinical study. RESULTS: Reduced activities of KLK5 and PLA2 were observed in the presence of the alcohols. The greatest denaturing effect was always observed for n-propanol (P  isopropanol > ethanol. At the high application frequencies, the effect of the different alcohols on transepidermal water loss (TEWL) and skin capacitance was similar, but at the low application frequencies, n-propanol had a significant effect on TEWL and capacitance values (P < 0.05). Equally, n-propanol and isopropanol produced significantly more skin redness at the low application frequencies. CONCLUSIONS: Clearly, isopropanol and n-propanol caused significant SC and keratinocyte perturbation in vitro together with damage to skin condition and function in vivo whereas ethanol did not. As a result, we show that ethanol-based sanitizers are better tolerated by skin, particularly in high-use settings, than other alcohols and should be the active ingredient of choice

    Experiments on Multidimensional Solitons

    Full text link
    This article presents an overview of experimental efforts in recent years related to multidimensional solitons in Bose-Einstein condensates. We discuss the techniques used to generate and observe multidimensional nonlinear waves in Bose-Einstein condensates with repulsive interactions. We further summarize observations of planar soliton fronts undergoing the snake instability, the formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    Get PDF
    Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to &lt; 150 meV while preserving excellent time resolution of about 30 fs. © 2014 The Authors

    Self-amplified photo-induced gap quenching in a correlated electron material.

    Get PDF
    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation

    Efficient assembly of very short oligonucleotides using T4 DNA Ligase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In principle, a pre-constructed library of all possible short oligonucleotides could be used to construct many distinct gene sequences. In order to assess the feasibility of such an approach, we characterized T4 DNA Ligase activity on short oligonucleotide substrates and defined conditions suitable for assembly of a plurality of oligonucleotides.</p> <p>Findings</p> <p>Ligation by T4 DNA Ligase was found to be dependent on the formation of a double stranded DNA duplex of at least five base pairs surrounding the site of ligation. However, ligations could be performed effectively with overhangs smaller than five base pairs and oligonucleotides as small as octamers, in the presence of a second, complementary oligonucleotide. We demonstrate the feasibility of simultaneous oligonucleotide phosphorylation and ligation and, as a proof of principle for DNA synthesis through the assembly of short oligonucleotides, we performed a hierarchical ligation procedure whereby octamers were combined to construct a target 128-bp segment of the beta-actin gene.</p> <p>Conclusions</p> <p>Oligonucleotides as short as 8 nucleotides can be efficiently assembled using T4 DNA Ligase. Thus, the construction of synthetic genes, without the need for custom oligonucleotide synthesis, appears feasible.</p

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Numerical approximations for the tempered fractional Laplacian: Error analysis and applications

    Full text link
    In this paper, we propose an accurate finite difference method to discretize the dd-dimensional (for d≄1d\ge 1) tempered integral fractional Laplacian and apply it to study the tempered effects on the solution of problems arising in various applications. Compared to other existing methods, our method has higher accuracy and simpler implementation. Our numerical method has an accuracy of O(hÏ”)O(h^\epsilon), for u∈C0,α+Ï”(Ωˉ)u \in C^{0, \alpha+\epsilon} (\bar{\Omega}) if α<1\alpha < 1 (or u∈C1,α−1+Ï”(Ωˉ)u \in C^{1, \alpha-1+\epsilon} (\bar{\Omega}) if α≄1\alpha \ge 1) with Ï”>0\epsilon > 0, suggesting the minimum consistency conditions. The accuracy can be improved to O(h2)O(h^2), for u∈C2,α+Ï”(Ωˉ)u \in C^{2, \alpha+\epsilon} (\bar{\Omega}) if α<1\alpha < 1 (or u∈C3,α−1+Ï”(Ωˉ)u \in C^{3, \alpha - 1 + \epsilon} (\bar{\Omega}) if α≄1\alpha \ge 1). Numerical experiments confirm our analytical results and provide insights in solving the tempered fractional Poisson problem. It suggests that to achieve the second order of accuracy, our method only requires the solution u∈C1,1(Ωˉ)u \in C^{1,1}(\bar{\Omega}) for any 0<α<20<\alpha<2. Moreover, if the solution of tempered fractional Poisson problems satisfies u∈Cp,s(Ωˉ)u \in C^{p, s}(\bar{\Omega}) for p=0,1p = 0, 1 and 0<s≀10<s \le 1, our method has the accuracy of O(hp+s)O(h^{p+s}). Since our method yields a (multilevel) Toeplitz stiffness matrix, one can design fast algorithms via the fast Fourier transform for efficient simulations. Finally, we apply it together with fast algorithms to study the tempered effects on the solutions of various tempered fractional PDEs, including the Allen-Cahn equation and Gray-Scott equations.Comment: 21 pages, 11 figures, 3 table

    Routine Islet Autoantibody Testing in Clinically Diagnosed Adult-Onset Type 1 Diabetes Can Help Identify Misclassification and the Possibility of Successful Insulin Cessation

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Diabetes Association via the DOI in this recordOBJECTIVE Recent joint American Diabetes Association and European Association for the Study of Diabetes guidelines recommend routine islet autoantibody testing in all adults newly diagnosed with type 1 diabetes. We aimed to assess the impact of routine islet autoantibody testing in this population. RESEARCH DESIGN AND METHODS We prospectively assessed the relationship between islet autoantibody status (GADA, IA-2A, and ZNT8A), clinical and genetic characteristics, and progression (annual change in urine C-peptide–to–creatinine ratio [UCPCR]) in 722 adults (≄18 years old at diagnosis) with clinically diagnosed type 1 diabetes and diabetes duration <12 months. We also evaluated changes in treatment and glycemia over 2 years after informing participants and their clinicians of autoantibody results. RESULTS Of 722 participants diagnosed with type 1 diabetes, 24.8% (179) were autoantibody negative. This group had genetic and C-peptide characteristics suggestive of a high prevalence of nonautoimmune diabetes: lower mean type 1 diabetes genetic risk score (islet autoantibody negative vs. positive: 10.85 vs. 13.09 [P < 0.001] [type 2 diabetes 10.12]) and lower annual change in C-peptide (UCPCR), −24% vs. −43% (P < 0.001). After median 24 months of follow-up, treatment change occurred in 36.6% (60 of 164) of autoantibody-negative participants: 22.6% (37 of 164) discontinued insulin, with HbA1c similar to that of participants continuing insulin (57.5 vs. 60.8 mmol/mol [7.4 vs. 7.7%], P = 0.4), and 14.0% (23 of 164) added adjuvant agents to insulin. CONCLUSIONS In adult-onset clinically diagnosed type 1 diabetes, negative islet autoantibodies should prompt careful consideration of other diabetes subtypes. When routinely measured, negative antibodies are associated with successful insulin cessation. These findings support recent recommendations for routine islet autoantibody assessment in adult-onset type 1 diabetes.National Institute for Health Research (NIHR)Diabetes UKWellcome Trus

    Nonlinear vortex light beams supported and stabilized by dissipation

    Full text link
    We describe nonlinear Bessel vortex beams as localized and stationary solutions with embedded vorticity to the nonlinear Schr\"odinger equation with a dissipative term that accounts for the multi-photon absorption processes taking place at high enough powers in common optical media. In these beams, power and orbital angular momentum are permanently transferred to matter in the inner, nonlinear rings, at the same time that they are refueled by spiral inward currents of energy and angular momentum coming from the outer linear rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative vortex solitons, the existence of these vortex beams does not critically depend on the precise form of the dispersive nonlinearities, as Kerr self-focusing or self-defocusing, and do not require a balancing gain. They have been shown to play a prominent role in "tubular" filamentation experiments with powerful, vortex-carrying Bessel beams, where they act as attractors in the beam propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new solution to the problem of the stable propagation of ring-shaped vortex light beams in homogeneous self-focusing Kerr media. A stability analysis demonstrates that there exist nonlinear Bessel vortex beams with single or multiple vorticity that are stable against azimuthal breakup and collapse, and that the mechanism that renders these vortexes stable is dissipation. The stability properties of nonlinear Bessel vortex beams explain the experimental observations in the tubular filamentation experiments.Comment: Chapter of boo
    • 

    corecore